Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
New Phytol ; 242(5): 2026-2042, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38494681

RESUMEN

Seed dormancy governs germination timing, with both evolutionary and applied consequences. Despite extensive studies on the hormonal and genetic control of these processes, molecular mechanisms directly linking dormancy and germination remain poorly understood. By screening a collection of lines overexpressing Arabidopsis transcription factors, we identified ERF50 as a key gene to control dormancy and germination. To study its regulation, we measured seed-related physiological parameters in loss-of-function mutants and carried out transactivation, protein interaction and ChIP-PCR analyses. We found direct ERF50-mediated repression of DOG1 and activation of EXPA2 transcription, which results in enhanced seed germination. Although ERF50 expression is increased by DOG1 in dormant seeds, ERF50 germination-promoting activity is blocked by RGL2. The physiological, genetic and molecular evidence gathered here supports that ERF50 controls germination timing by regulating DOG1 levels to leverage its role as enhancer of seed germination, via RGL2 antagonism on EXPA2 expression. Our results highlight the central role of ERF50 as a feedback regulator to couple and fine-tune seed dormancy and germination.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Retroalimentación Fisiológica , Regulación de la Expresión Génica de las Plantas , Germinación , Latencia en las Plantas , Semillas , Factores de Transcripción , Germinación/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Arabidopsis/fisiología , Arabidopsis/crecimiento & desarrollo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Semillas/crecimiento & desarrollo , Semillas/fisiología , Semillas/genética , Latencia en las Plantas/genética , Factores de Tiempo , Unión Proteica
2.
Plants (Basel) ; 13(1)2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38202349

RESUMEN

Upon storage, seeds inevitably age and lose their viability over time, which determines their longevity. Longevity correlates with successful seed germination and enhancing this trait is of fundamental importance for long-term seed storage (germplasm conservation) and crop improvement. Seed longevity is governed by a complex interplay between genetic factors and environmental conditions experienced during seed development and after-ripening that will shape seed physiology. Several factors have been associated with seed ageing such as oxidative stress responses, DNA repair enzymes, and composition of seed layers. Phytohormones, mainly abscisic acid, auxins, and gibberellins, have also emerged as prominent endogenous regulators of seed longevity, and their study has provided new regulators of longevity. Gaining a thorough understanding of how hormonal signalling genes and pathways are integrated with downstream mechanisms related to seed longevity is essential for formulating strategies aimed at preserving seed quality and viability. A relevant aspect related to research in seed longevity is the existence of significant differences between results depending on the seed equilibrium relative humidity conditions used to study seed ageing. Hence, this review delves into the genetic, environmental and experimental factors affecting seed ageing and longevity, with a particular focus on their hormonal regulation. We also provide gene network models underlying hormone signalling aimed to help visualize their integration into seed longevity and ageing. We believe that the format used to present the information bolsters its value as a resource to support seed longevity research for seed conservation and crop improvement.

3.
Physiol Plant ; 174(3): e13722, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35606933

RESUMEN

In a microgravity environment, without any gravitropic signal, plants are not able to define and establish a longitudinal growth axis. Consequently, absorption of water and nutrients by the root and exposure of leaves to sunlight for efficient photosynthesis is hindered. In these conditions, other external cues can be explored to guide the direction of organ growth. Providing a unilateral light source can guide the shoot growth, but prolonged root exposure to light causes a stress response, affecting growth and development, and also affecting the response to other environmental factors. Here, we have investigated how the protection of the root from light exposure, while the shoot is illuminated, influences the direction of root growth in microgravity. We report that the light avoidance mechanism existing in roots guides their growth towards diminishing light and helps establish the proper longitudinal seedling axis in simulated microgravity conditions. This process is regulated by flavonols, as shown in the flavonoid-accumulating mutant transparent testa 3, which shows an increased correction of the root growth direction in microgravity, when the seedling is grown with the root protected from light. This finding may improve the efficiency of water and nutrient sourcing and photosynthesis under microgravity conditions, as they exist in space, contributing to better plant fitness and biomass production in space farming enterprises, necessary for space exploration by humans.


Asunto(s)
Vuelo Espacial , Ingravidez , Flavonoles , Raíces de Plantas/fisiología , Plantones , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...